Review Article Open Access

LIQUID BIOPSIES IN HEMATOLOGICAL MALIGNANCIES: EXPLORING ANALYSIS FOR ENHANCED PATIENT MANAGEMENT

^{1*}Asma Mustafa, MBBS, MSc, M. Phil, ²Usman Naeem, MBBS, M. Phil, ³Sidra Bashir, MBBS, FCPS, ⁴Maria Mehmood, MBBS, M. Phil, ⁵Ishfaq Ahmad Shah, MBBS, FCPS

*Corresponding Author: Asma Mustafa (asmamustafa87@gmail.com)

Cite this article:

Mustafa A, Naeem U, Bashir S, Mehmood M, Shah IA. Liquid Biopsies in Hematological Malignancies: Exploring Analysis for Enhanced Patient Management. AJMAHS. 2024; 2(2):58-74.

ABSTRACT

Evaluating the malignant profile of mutations is essential for effective patient classification, treatment planning, as well as management. Currently, genomic profiling of hematological cancers along with solid masses, i.e., lymphomas, is primarily conducted on the tissue biopsies. However, tumors may contain distinct genetic alterations in different anatomical regions. The circulating tumor DNA (ctDNA) exploration from liquid biopsies is a developing technique, allowing for genotyping, disease monitoring while treatment and patient follow-up. The ctDNA evaluation from liquid biopsies of Hodgkin lymphoma (HL) and diffuse large B-cell lymphoma (DLBCL) can mirror the mutation profile of biopsies in tissues and detect mutations not found in tissue samples. Additionally, variations in ctDNA levels following chemotherapy cycles can expressively predict the outcome of the patients. Promising results are also seen with ctDNA analysis in myeloid neoplasms. Beyond mutational analysis, liquid biopsies hold potential for future applications, such as examination of ctDNA epigenetic patterns and fragments examination. As a result, numerous clinical trials are currently investigating the integration of ctDNA analysis for personalized treatment in hematological malignancies. This review explores various methods for ctDNA analyses and use of liquid biopsies in hematological cancers.

Keywords: Hematological malignancies, lymphoma, leukemia, circulating tumor DNA, genomic profiling.

¹Consultant Hematologist, Employees Social Security Institution, Hattar, KPK

²Consultant Hematologist, Employees Social Security Institution, Swat, KPK

³Consultant Hematologist, Employees Social Security Institution, Peshawar, KPK

⁴Consultant Pathologist, Employees Social Security Institution, Peshawar, KPK

⁵Assistant Professor, Medical Oncology, Khyber Teaching Hospital, Peshawar KPK

Introduction

Evaluating the mutational profile of cancer is essential for the patient stratification, management, as well as making treatment assessments. In hematological cancers along with solid masses, i.e., lymphomas, the genome profiling of tumor is typically executed on the tissue biopsies. These molecular and genomic investigations strengthen the histological diagnoses by detecting molecular biomarkers having therapeutic and prognostic significance¹. Nevertheless, the need for invasive procedures limits the feasibility of sequential sampling for real-time observation. Furthermore, tissue biopsies typically focus on a single site of tumor, restricting widespread tumor genomic description, which can differ across diverse structural locations^{2,3}.

Liquid biopsy is a developing method that characterizes malignancies by isolating and analyzing the components derived from tumors among various bodily fluids, e.g., cerebrospinal fluid, urine, and blood⁴. These components can include circulating tumor cells (CTCs), tumoreducated platelets (TEPs), cell-free nucleic acids, or exosomes. In hematological cancers, the liquid biopsy offers a negligibly invasive procedure for real-time that can help the tissue biopsy limitations, including procedural risks and the inability to reason for the spatial intra-tumor heterogeneity4. Various synchronous tumor DNA sources provide complementary information on mutational driver genes with possible value for prognosis or prediction. The exploration of circulating tumor DNA (ctDNA) from plasma is one of the most common liquid biopsy

applications in hematological malignancies, used for monitoring and genotyping of disease and its response during chemotherapy⁵. This review will converse the present applications of the liquid biopsy in myeloid and lymphoid tumors and explore prospective applications in future that can enable a more personalized therapeutic management approach for each patient.

1. Analysis and Detection of ctDNA

The circulating cell-free DNA (cfDNA) comprises short fragments of DNA, typically 180-200 base pairs in length that enter the bloodstream from apoptotic or necrotic cells⁶. In healthy individuals, cfDNA levels in the plasma range from 1-16.8 ng/mL and have a brief half-life of about two hours. These levels can rise due to factors i.e., infection, exercise, stroke, or trauma. In tumor patients, the cfDNA concentration is notably increased than in normal individuals because the necrotic and apoptotic debris in tumors is not efficiently removed by phagocytes. This inefficiency results in the collection of cell debris, such as cfDNA, which consequently enters the bloodstream. For these patients, cfDNA includes DNA from both healthy and cancerous cells⁷. The portion of cfDNA that comes from tumor cells, released through apoptosis, secretion, and necrosis, is ctDNA. In patients with lymphoma, the levels of ctDNA fluctuate widely among various subtypes and correlates with the type of tumor, tumor burden, and disease stage. On average, ctDNA concentration in patients with lymphoma is approximately 30 ng/mL8.

As discussed previously, the isolation of ctDNA can be done from various bodily fluids, but peripheral blood is the most commonly used source due to its easy accessibility. Serum and plasma are typically used for ctDNA analysis, with plasma being preferred. This preference is because plasma has lower levels of cfDNA from normal leukocytes, which helps to reduce dilution of the ctDNA. Blood should be collected in K2EDTA tubes followed by processing for separation of plasma within 6 hours to prevent leukocyte genomic DNA contamination9. Alternatively, specialized tubes like Streck BCT can preserve and stabilize ctDNA for 14 days, permitting safe transportation of samples. In order to preserve the cfDNA integrity and diminish lysis of leukocyte, peripheral blood should be processed through two sequential centrifugations before storage or extraction of cfDNA¹⁰. Investigations have shown that the purified plasma can be frozen at cold temperature and stored in the single-use aliquots without compromising its quality^{11,12}.

1.1. Methods to Analyze ctDNA

In hematological cancers, ctDNA analysis is used to detect gene mutations and examine distinctive immunoglobulin heavy chain (IGHV) rearrangements in B-cell malignancies. This allows to identify somatic mutations in cancerous genes without needing prior tumor biopsy analysis, making it a tissue biopsy-free approach. This method can reveal mutations from different tumor sites, offering a comprehensive view of tumor heterogeneity¹³. Advanced next-generation sequencing (NGS) techniques enables the

analogous sequencing of many DNA components and molecules, identifying various genetic changes, including deletions/insertions, copy number alterations, rearrangements, and point mutations¹⁴. Cancer Personalized Profiling by deep sequencing (CAPP-seq) is one of the targeted method of NGS that detects tumorspecific mutations in the ctDNA within diverse malignancies. CAPP-seg uses a disease-related selector that includes intronic and exonic targets wrapper regions with recognized recurrent mutations in particular tumor types. These target regions are then amplified and sequenced, allowing for the quantification of ctDNA by identifying cancer-related mutations. Nearly all Bcell malignancies have district rearrangement of IGHV, detectable in ctDNA with use of PCR or NGS-dependent technologies. If the IGHV rearrangement is unproductive, the IGL or IGL light chain sequence can serve as an alternative markers. To confirm that the IGHV rearrangement detected in a liquid biopsy is of tumor origin, it should first be identified in a tissue biopsy.(15) The NGS-dependent assays e.g., clonoSEQ, use which universal primers target to immunoglobulin light/heavy chains, are FDAapproved for detecting minimal residual disease (MRD) among chronic lymphocytic leukemia (CLL), B-cell acute lymphoblastic leukemia (B-ALL), and multiple myeloma (MM) patients^{16–19}. These assays are widely utilized to monitor MRD in patients with lymphoma. However, these immunoglobulin analysis methods focus on a one molecular markers and may not be able to identify clonal V (D) J rearrangement in about 20% of lymphoma cases because of increased somatic hypermutations (SHM) rate^{16,19,20}.

2. Applications of ctDNA Hematological Malignancies

2.1. Diffuse Large B-cell Lymphoma

The diffuse large B-cell lymphoma (DLBCL) exhibits substantial molecular and clinical diversity. Within a single patient, different anatomical regions may possess unique genetic mutations (Table 1)²¹. Liquid biopsy has been shown to effectively identify mutations that might be missed in a single tissue biopsy. Research indicates that genetic alterations associated with lymphoma can be identified from the ctDNA with use of CAPP-seq, even in the absence of an biopsy^{8,22}. initial tumor tissue Several independent studies have assessed specificity and sensitivity of the target gene mutations exploration in ctDNA compared to tissue biopsy in patients with DLBCL^{23,24}. The true-positive rate for mutations found in both range of ctDNA and tissue biopsy varies from 95% to 99%. Furthermore, the liquid biopsy uncover about 15% to 20% of mutations not recognized in the lymph node biopsies, while merely about 1% to 5% of low-abundance mutations are detected solely in lymph node biopsies and not in ctDNA^{23,24}.

While many patients of DLBCL are successfully treated with first-line chemoimmunotherapy regimen R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone), new treatment modalities have recently been permitted^{25,26}. Despite these advancements, about 40% of DLBCL patients experience relapse or are refractory to therapy^{27,28}. Identifying

molecular and clinical biomarkers to enhanced pinpoint patients at higher risk, could progress outcomes and rate of cure. Currently, criteria for response to lymphoma treatment do not consists markers of MRD at the completion of treatment. Monitoring ctDNA levels after and during treatment presents a prospective method for assessing MRD in patients with DLBCL. Multiple methods are employed to assess MRD in DLBDL utilizing genetic mutation as well as IGHV rearrangement through CAPP-seq. throughput quantitative methods for analyzing IGHV rearrangements in ctDNA have shown the ability to identify the progression of disease months prior to conventional methods of imaging²⁹. Another strategy involves using CAPP-seq to measure ctDNA levels at baseline and throughout R-CHOP treatment. A 2-log decrease in ctDNA from the baseline after one treatment cycle, and a 2.5-log reduction after two cycles have been recognized as optimal thresholds patient for predicting outcomes^{8,18,30,31}. Furthermore, ctDNA-based molecular response remains an independent factor of prognosis for event-free survival (EFS), and overall survival (OS), even when considering the international prognostic index (IPI) score, interim CT/PET scan results, and cell of origin³².

Advancements in molecular biology techniques and *in silico* methods, which reduce technical inaccuracies have significantly increased sensitivity of the targeted approaches based on NGS. Techniques to suppress errors have lowered the rate of background, achieving a sensitivity of approximately 2.5:100,000^{22,33}. For instance, combining CAPP-seq to distinctive

barcoding and downstream bioinformatics mainly eradicates errors of sequencing and background noise, enabling the detection of ctDNA at 0.002% allele frequency (AF)8,24. To further enhance diagnostic sensitivity and minimize rate of background errors, an innovative technique named phased variant enrichment and detection sequencing (PhasED-seq) has been established. This technique monitors two or further variants ("phased variants") on the similar DNA strand, biological as well as technical background signals while maintaining enhanced recovery³⁴. PhasED-seq monitoring of ctDNA at an detection minimum limit of about 0.000005%8,22. This method is predominantly beneficial in B-cell tumor, where multiple-phased variants happen in stereotypes regions of malignant genome because of ontarget and unusual somatic hypemutations (SHM) regulated activation-induced by deaminsae (AID)35. Although PhasED-seq shows great potential in improving sensitivity to detect ctDNA in patients with lymphoma, further research is essential to ratify its advantage over CAPP-seq in early relapse detection and to determine the paramount clinical applications for this technique²².

2.2. Central Nervous System Lymphoma

The diffuse large B-cell lymphomas (DLBCLs) which involve central nervous system (CNS), terms CNS lymphomas (CNSLs), are divided into primary and secondary types. Primary CNS lymphoma (PCNSL) is a rare subclass of DLBCL that affects the brain, spinal cord, eyes, or leptomeninges without spreading outside the

CNS. Secondary CNS lymphoma (SCNSL) describes either a DLBCL relapse confined to CNS or simultaneous involvement of the CNS and other body systems³⁶. Diagnosing CNSL often requires invasive neurosurgical procedures, which can be risky or delayed due to concurrent treatments. Consequently, clinical outcomes for CNSL patients vary widely, with many facing early mortality or recurrence after initial treatment³⁷. This highlights the need for innovative diagnostic methods and biomarkers that can identify CNSL non-invasively, better stratify the patients by risk, and calculate responses to therapy.

Primarily, in PCNSL, the liquid biopsy focused on cerebrospinal fluid (CSF) due to decreased plasmas ctDNA levels, which made recognition difficult^{38,39}. However, advancements in liquid biopsy methods, including the integration of PhasED-seg and CAPP-seg, have significantly improved the sensitivity of ctDNA detection, achieving high concordance rates in both CSF and plasma of CNSL patients^{40,41}. Plasma ctDNA analysis has successfully recognized recurrent mutations in the genes related to the B-cell receptor signaling pathway, such as CD79b, MYD88, and PIM142,43. Expanding on the capability of ctDNA analysis to genotype CNSL, researchers have explored its prognostic value before and after treatment. Patients having detectable ctDNA in plasma before treatment, exhibited considerably shorter progression-free survival (PFS) and overall survival (OS), even when accustomed for known radiological and clinical risk factors. Furthermore, like DLBCL, the recognition of MRD through plasma ctDNA while

therapy identified the patients having bad prognosis after immunochemotherapy regimen⁴⁰.

2.3. Hodgkin Lymphoma

The main obstacle in fully understanding Hodgkin lymphoma (HL) lies in the scant presence of malignant Hodgkin/Reed-Sternberg (HRS) cells among biopsy specimens, typically ranging from 0.1% to 3%⁴⁴. To overcome this challenge in tissue-based profiling, plasmas ctDNA emerged as a promising alternative for characterization HL mutations^{45,46}. Notably, HL patients exhibit approximately double the levels of cfDNA compared to healthy individuals, with a median ctDNA levels of around 200 hGE/mL47. Despite HL's smaller tumor cell volume relative to other aggressive lymphomas, there is a notable association between levels of ctDNA and volume of radiologic malignancy, suggesting substantial release of ctDNA in HL, possibly attributable to its high apoptotic HRS cell rate⁴⁵. As a result, initial attention has been directed towards HL genotyping via liquid biopsy. Leveraging a panel of CAPP-seq comprising recurrently mutated genes in HLA, ctDNA efficaciously identified 87% of genetics. Furthermore, longitudinal ctDNA profiling unveiled therapy-based arrangements of clonal progression in relapsed individuals posttreatment and those upholding partial remission in immunotherapy⁴⁸. Given immune system evasion's pivotal role in HL, investigations into genetic alterations of the immune checkpoint genes in ctDNA were prompted. cfDNA genomic profiling accurately identified and characterized approximately 80% of copy number aberrations of chromosome 9p24.1, associated with overexpression of PD-1 ligand and favorable outcomes in classic HL (cHL)^{49,50}.

Computed tomography/positron emission tomography (CT/PET) stands as the gold standard for the staging and evaluating response in cHL⁵¹. Total metabolite tumor volume (TMTV) at diagnosis strongly predicts outcomes in cHL. Notable, plasma ctDNA levels correlate with TMTV, suggesting that combining ctDNA quantification with TMTV assessment could improve outcome prediction at diagnosis⁵²⁻⁵⁴. Interim CT/PET following two ABVD cycles in advanced cHL characterizes an essential therapy juncture. Patients with negative interim CT/PET continue the ABVD, while those with positive results switch to intensified regimens. Nevertheless. meta-analyses reveal some inaccuracies in this approach, prompting CT/PET alongside ctDNA analysis. A >2-log decrease in the ctDNA following two chemotherapy cycles signals complete response and potential care, whereas a <2-log reduction indicates progression and shorter survival. Hence, ctDNA quantification supplements interim CT/PET in evaluating residual disease in cHL, enabling differentiation between cured and relapsing patients despite discrepancies in interim CT/PET interpretations⁵⁵.

Table 1: Clinical Application of ctDNA in Lymphoma

Application	Type of lymphoma	Target	Method	Disease stage	Findings	Ref.
Concordance	HL NHL	β-globin gene	qPCR	Diagnosis	Average levels of cfDNA in lymphoma patients were increased	56
	PCNSL	APP gene	RT-qPCR	Diagnosis	MYD88 was identified in cfDNA of CSF and plasma samples	57
Prognosis	HL NHL	β-globin gene	qPCR	Diagnosis	Increased cfDNA levels were linked to bad prognosis in HL; not significant in DLBCL	56
	NHL	APP gene	RT-qPCR	Diagnosis	Higher cfDNA concentrations were linked to bad 2-year PFS, while lower concentration was correlated with significantly higher 2-years PFS rates	58
	FL	IgH gene rearrangement	Multiplex PCR ddPCR	Diagnosis	Patients with higher cfDNA levels had a reduced 4-year PFS	59
		V(D)J gene	NGS	Diagnosis	Elevated cfDNA levels were linked to bad progression-free survival; also detected subclones	19
	DLBCL	MIR34B/C MIR34A DBC1 APK1	PCR	Diagnosis	Methylation of DAPK1 and DBC1 was correlation with poor 5-year OS	60
		LINE-1	PCR	Diagnosis	Hypomethylation of LINE- 1 emerged as an independent risk factor for poor survival	61
Staging	DLBCL	IgH gene rearrangement	NGS PCR	Diagnosis/ post- treatment	Patients with detectable cfDNA had higher hazard ratio for clinical disease progression	18
Response assessment	DLBCL	Somatic mutations	CAPP-Seq Fluorometry	Diagnosis/ Relapse	Patients with EMR demonstrated EFS at 24 months	31

APP, amyloid beta precursor protein; BCL2, B-cell lymphoma 2; CAPP-Seq, cancer personalized profiling by deep sequencing; CCND1, cyclin D1; cfDNA, cell-free DNA; CLL, chronic lymphocytic leukemia; ddPCR, digital droplet PCR; DLBCL, diffuse large B-cell lymphoma; EFS, event free survival; EMR, early molecular response; FL, follicular lymphoma; HL, Hodgkin lymphoma; IgH, immunoglobulin heavy chain; LINE-1, long interspersed element-1; MYD88, myeloid differentiation primary response 88; NGS, next generation sequencing; NHL, non-Hodgkin lymphoma; OS, overall survival; PCR, polymerase chain reaction; PFS, progression free survival; PCNSL, primary central nervous system lymphoma; qPCR, quantitative PCR; RT-qPCR, reverse transcriptase quantitative PCR; TCR, T-cell receptor

2.4. Myeloid Leukemia and Neoplasm

The analysis of many myeloid cancers depends upon a comprehensive evaluation involving morphological, molecular, and immunophenotypic analyses of the bone marrow⁶². While monitoring the MRD for these malignancies typically relies on sequential bone marrow assessments, recent research has shed light on the ability of circulating cfDNA as a valuable diagnostic modality. Initial investigations have shown increased cfDNA levels in patients having myeloid neoplasms in contrast to healthy individuals, making it a reliable indicator for disease-specific identifying aenomic abnormalities (Table 2)63,64. The significance of cfDNA in myeloid neoplasms was initially recognized in acute myeloid leukemia (AML)65. The targeted ctDNA NGS has further advanced our understanding by uncovering clinically relevant mutations that may be missed by traditional bone marrow analysis, thereby complementing AML patient evaluation and monitoring. In patients with AML undergoing allogeneic hematopoietic stem cell transplantation (alloSCT), monitoring MRD based on ctDNA has shown promising results. Using NGS, researchers identified driver mutations among 51 patients, therefore personalized digital PCR assays were developed to assess MRD. Analysis of multiple time points post-alloSCT revealed the perseverance of ctDNA mutations was linked with poorer outcomes^{66,67}. Analogous strategies have been applied in the MDS, where serial monitoring of ctDNA with use of digital PCR enables the recognition and monitoring of the driver mutations and karyotyping aberrations while treatment, predicting treatment failure^{68,69}.

A recent research investigated the cytogenetic and molecular profiles of the MDS through NGS analysis of ctDNA, comparing findings with DNA samples of paired bone marrow. The mutation profile identified in ctDNA displayed a high level of agreement (92.1%) with bone marrow analysis, and the variant allele frequency correlated well between ctDNA and bone marrow samples. Notably, NGS analysis of ctDNA and microarrays demonstrated high concordance in identifying chromosomal aberrations, with all cytogenetic abnormalities identified in bone marrow DNA also discovered in ctDNA. The findings highlights that ctDNA determination holds promise for the molecular representation and monitoring of MDS⁷⁰. While there is limited data on liquid biopsy amond patients with Philadelphia-negative myeloproliferative neoplasms (MPNs), investigation reported elevated concentration of ctDNA in these disorders compared to healthy individuals. Furthermore, patients with primary myelofibrosis exhibited higher ctDNA levels than those with polycythemia vera or essential thrombocythemia. Like other hematological malignancies, ctDNA reveals the mutation profile recognized in the genomic DNA from granulocytes in peripheral blood or bone marrow samples71.

Table 2: Application of ctDNA in Leukemia

Application	Type leukemia	of Target	Method	Disease stage	Findings	Ref.
Concordance	ALL	TCR/IgH rege rearrangement	e RQ-PCR	Diagnosis	In T-ALL, there was a robust correlation between MRD levels in matched bone marrow and peripheral blood cfDNA; no correlation in B-ALL	72
	AML	Somatic mutations	s NGS	Diagnosis	cfDNA revealed a median of 3 novel mutations in patients that were not detected in bone marrow at diagnosis; also detected additional and identical mutations	73
	AML ALL MDS	FLT3-ITD	PCR	Diagnosis	Detection rate was same for both cfDNA and bone marrow in AML and MDS patients, but not in ALL patients	74
Early relapse detection	AML ALL	Somatic mutations	s NGS	Diagnosis/ Relapse	Mutations detected in both cfDNA and bone marrow; IDH1 and ASXL1 mutations in cfDNA found months before relapse	75
MRD response assessment	ALL	TCR/IgH generent	RQ-PCR/ Flow cytometry	Diagnosis/ Post- treatment	Weak correlation observed between two methods when assessing the level of MRD	76
Prognosis	ALL	TCR/IgH gener rearrangement	RQ-PCR/ Flow cytometry	Diagnosis/ Post- treatment	Positive MRD by flow cytometry on day 15 of treatment significantly increased the risk of relapse by 20-35 fold	76
Response assessment	ALL	TCR/IgH gener rearrangement	RQ-PCR	Diagnosis/ Post- treatment	In precursor B-ALL, MRD levels were notably elevated in bone marrow samples	72

ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; ASXL, additional sex combs-like; cfDNA, cell-free DNA; FLT3-ITD, FMS-like tyrosine kinase internal tandem repeat; IDH1, isocitrate dehydrogenase 1; IgH, immunoglobulin heavy chain; MDS, myelodysplastic syndrome; MRD, minimal residual disease; NGS, next generation sequencing; PCR, polymerase chain reaction; RQ-PCR, real-time quantitative PCR; TCR, T-cell receptor

3. Future Applications

The investigation into patterns of cfDNA fragmentation among liquid biopsy, called as "fragmentomics," and its relationship with therapeutic outcomes has gained significant attention in recent era77. The thought of cfDNA fragmentomics was initially presented in 2015, leading to the establishment of various experimental and computational methods to assess the patterns of fragmentation for cfDNA in the plasma^{78,79}. Typically, cfDNA demonstrates peaks around 166 base pairs or their multiples, indicating apoptosis as the primary cfDNA release mechanism. Cancer patients often exhibit molecules of ctDNA having smaller size distributions compared to the hematopoietic cells-derived background cfDNA. Recent studies suggest that the lengths of ctDNA fragments in lymphoma patients may vary individually and correlate with stage of disease^{80–83}. Furthermore, these patterns of fragmentation have shown predictive capability in DLBCL, underscoring fragmentomics as a promising prognostic marker for this condition²⁸.

Tumor-specific changes in methylation of DNA play essential part in gene expression regulation and appear promptly in neoplastic progression. Such variations can potentially be identified in the plasma even earlier than clinical diagnosis of cancer is established⁸⁴. Epigenetic sequencing of cfDNA encompasses the complete cfDNA pool, enabling the detection of methylation alterations beyond somatically mutated cfDNA alone. This method holds promise, given the widespread

distribution of methylation sites through human genome85. Among hematological cancers, patterns of aberrant methylation identified in the cfDNA have been related with unfavorable DLBCL outcomes^{60,61}. Additionally, abnormal alterations among 5-hydroxymethylcytosine (5hmC), a distinctive epigenetic characteristic observed in numerous tumors, have been detected in cfDNA, emerging as a more specific marker for diagnosing and prognosing AML⁸⁶. Furthermore, specific patterns DNA methylation can precisely differentiate between cancer types in cfDNA samples, facilitating noninvasive cancer classification⁸⁷. incorporation of mutation and epigenetic investigations of ctDNA molecules offers a favorable avenue for comprehensive tumor characterization.

4. Conclusion

The exploration of ctDNA from the liquid biopsy is gaining momentum in hematological cancers as a trustworthy method for cancer genotyping, treatment monitoring, and prediction of outcome. Recent technological advancements have facilitated the combination of conventional molecular profiling with the liquid biopsy to identify and analyze biomarkers. The adoption of techniques like PhasED-seq and CAPP-seq in HL and DLBCL has emerged as a well-established method, enabling baseline outcome prediction and evaluation of minimal residual disease post-chemoimmunotherapy, thereby aiding in the early detection of relapses. Numerous clinical trials are

currently investigating ctDNA examination for personalized therapy strategies. Nevertheless, the challenge lies in ensuring the reproducibility of these high-throughput technologies across different laboratories, necessitating standardization and validation before clinical use. The predominant focus of the liquid biopsy endeavors in hematological cancers has been on gene mutation analysis using PhasED-seg and CAPP-seq techniques. However, liquid biopsy holds potential for exploring other disease indicators, including ctDNA epigenetic patterns, copy number abnormalities, and fragmentomics. The integration of these factors with innovative statistical techniques and machine learning approaches has the potential to enhance the molecular categorization of blood disorders. The ctDNA examination from liquid biopsy characterizes a significant step onward in precision medicine patients for having hematological cancers, particulatly those with cHL and DLBCL. The integration of ctDNA dynamics with the CT/PEAT scans at provisional stages shows promise for enhancing outcome prediction and tailoring personalized treatment strategies during therapy. Patients without residual disease may benefit from treatment reduction, while those with persistent conditions may require intensified therapy. Ongoing clinical trials are poised to provide crucial insights into these questions in the near future.

References

 Mancini SJC, Balabanian K, Corre I, Gavard J, Lazennec G, Bousse-Kerdilès M-C Le, et al. Deciphering Tumor Niches:

- Lessons From Solid and Hematological Malignancies. Front Immunol. 2021:12:766275.
- Larson MH, Pan W, Kim HJ, Mauntz RE, Stuart SM, Pimentel M, et al. A comprehensive characterization of the cell-free transcriptome reveals tissue- and subtype-specific biomarkers for cancer detection. Nat Commun. 2021;12:2357.
- 3. Hirahata T, ul Quraish R, Quraish A ul, ul Quraish S, Naz M, Razzaq MA. Liquid Biopsy: A Distinctive Approach to the Diagnosis and Prognosis of Cancer. Cancer Inf [Internet]. 2022 Feb 1 [cited 2024 May 22];21:11769351221076062. Available from: /pmc/articles/PMC8832574/
- Nikanjam M, Kato S, Kurzrock R. Liquid biopsy: current technology and clinical applications. J Hematol Oncol [Internet]. 2022 Dec 1 [cited 2024 May 22];15(1):131. Available from: https://pubmed.ncbi.nlm.nih.gov/3609684 7/
- Tivey A, Church M, Rothwell D, Dive C, Cook N. Circulating tumour DNA looking beyond the blood. Nat Rev Clin Oncol [Internet]. 2022 Aug 1 [cited 2024 May 23];19(9):600–12. Available from: https://www.nature.com/articles/s41571-022-00660-y
- Miranda FS de, Barauna VG, Santos L dos, Costa G, Vassallo PF, Campos LCG. Properties and Application of Cell-Free DNA as a Clinical Biomarker. Int J Mol Sci. 2021;22(17):9110.
- 7. Alborelli I, Generali D, Jermann P, Cappelletti MR, Ferrero G, Scaggiante B, et al. Cell-free DNA analysis in healthy individuals by next-generation sequencing: a proof of concept and technical validation study. Cell Death Dis [Internet]. 2019 Jul 11 [cited 2024 May 23];10:534. Available from: https://www.nature.com/articles/s41419-019-1770-3
- Lauer EM, Mutter J, Scherer F. Circulating tumor DNA in B-cell lymphoma: technical advances, clinical applications, and perspectives for translational research. Leukemia. 2022;36:2151–2164.
- 9. Lee JS, Kim M, Seong MW, Kim HS, Lee YK, Kang HJ. Plasma vs. serum in circulating tumor DNA measurement: characterization by DNA fragment sizing

- and digital droplet polymerase chain reaction. Clin Chem Lab Med [Internet]. 2020 Apr 1 [cited 2024 May 23];58(4):527–32. Available from: https://pubmed.ncbi.nlm.nih.gov/3187409 3/
- Danesi R, Lo YMD, Oellerich M, Beck J, Galbiati S, Re M Del, et al. What do we need to obtain high quality circulating tumor DNA (ctDNA) for routine diagnostic test in oncology? – Considerations on preanalytical aspects by the IFCC workgroup cfDNA. Clin Chim Acta. 2021 Sep 1;520:168–71.
- El Messaoudi S, Rolet F, Mouliere F, Thierry AR. Circulating cell free DNA: Preanalytical considerations. Clin Chim Acta [Internet]. 2013 Sep 23 [cited 2024 May 23];424:222–30. Available from: https://pubmed.ncbi.nlm.nih.gov/2372702 8/
- Merker JD, Oxnard GR, Compton C, Diehn M, Hurley P, Lazar AJ, et al. Circulating Tumor DNA Analysis in Patients With Cancer: American Society of Clinical Oncology and College of American Pathologists Joint Review. J Clin Oncol [Internet]. 2018 Jun 1 [cited 2024 May 23];36(16):1631–41. Available from:
 - https://pubmed.ncbi.nlm.nih.gov/2950484
- 13. Tan X, Yan H, Chen L, Zhang Y, Sun C. Clinical Value of ctDNA in Hematological Malignancies (Lymphomas, Multiple Myeloma, Myelodysplastic Syndrome, and Leukemia): A Meta-Analysis. Front Oncol [Internet]. 2021 Mar 4 [cited 2024 May 23];11:632910. Available from: https://pubmed.ncbi.nlm.nih.gov/3374795 4/
- 14. Satam H, Joshi K, Mangrolia U, Waghoo S, Zaidi G, Rawool S, et al. Next-Generation Sequencing Technology: Current Trends and Advancements. Biol. 2023;12(7):997.
- Noguchi T, Sakai K, Iwahashi N, Matsuda 15. K, Matsukawa H, Yahata T, et al. Changes in the gene mutation profiles of circulating tumor DNA detected using CAPP-Seg in chemotherapy-treated neoadjuvant advanced ovarian cancer. Oncol Lett [Internet]. 2020 [cited 2024 May 23];19(4):2713-20. Available from: https://pubmed.ncbi.nlm.nih.gov/3221882

- 21
- 16. Ching T, Duncan ME, Newman-Eerkes T, McWhorter MME, Tracy JM, Steen MS, et al. Analytical evaluation of the clonoSEQ establishing measurable for (minimal) residual disease in acute lymphoblastic leukemia, chronic lymphocytic leukemia, and multiple myeloma. BMC Cancer [Internet]. 2020 Jun 30 [cited 2024 May 23];20(1):612. Available https://pubmed.ncbi.nlm.nih.gov/3260564 7/
- Kurtz DM, Green MR, Bratman S V., Scherer F, Liu CL, Kunder CA, et al. Noninvasive monitoring of diffuse large Bcell lymphoma by immunoglobulin highthroughput sequencing. Blood [Internet]. 2015 Jun 11 [cited 2024 May 23];125(24):3679–87. Available from: https://pubmed.ncbi.nlm.nih.gov/2588777
- 18. Roschewski M, Dunleavy K, Pittaluga S, Moorhead M, Pepin F, Kong K, et al. Circulating tumour DNA and CT monitoring in patients with untreated diffuse large B-cell lymphoma: a correlative biomarker study. Lancet Oncol [Internet]. 2015 [cited 2024 May 23];16(5):541–9. Available from: https://pubmed.ncbi.nlm.nih.gov/2584216 0/
- 19. Sarkozy C, Huet S, Carlton VEH, Fabiani B, Delmer A, Jardin F, et al. The prognostic value of clonal heterogeneity and quantitative assessment of plasma circulating clonal IG-VDJ sequences at diagnosis in patients with follicular lymphoma. Oncotarget. 2017;8(5):8765–74.
- 20. Scherer F, Kurtz DM, Diehn M, Alizadeh AA. High-throughput sequencing for noninvasive disease detection in hematologic malignancies. Blood. 2017 Jul 27;130(4):440–52.
- Roschewski M, Phelan JD, Wilson WH. Molecular Classification and Treatment of Diffuse Large B-Cell Lymphoma and Primary Mediastinal B-Cell Lymphoma. Cancer J [Internet]. 2020 May 1 [cited 2024 May 23];26(3):195–205. Available from:
 - https://pubmed.ncbi.nlm.nih.gov/3249645
- 22. Roschewski M, Rossi D, Kurtz DM,

- Alizadeh AA, Wilson WH. Circulating Tumor DNA in Lymphoma: Principles and Future Directions. Blood Cancer Discov. 2022;3(1):5–15.
- 23. Rossi D, Diop F, Spaccarotella E, Monti S, Zanni M, Rasi S, et al. Diffuse large B-cell lymphoma genotyping on the liquid biopsy. Blood [Internet]. 2017 Apr 6 [cited 2024 May 23];129(14):1947–57. Available from: https://pubmed.ncbi.nlm.nih.gov/2809608 7/
- Scherer F, Kurtz DM, Newman AM, Stehr H, Craig AFM, Esfahani MS, et al. Distinct biological subtypes and patterns of genome evolution in lymphoma revealed by circulating tumor DNA. Sci Transl Med [Internet]. 2016 Nov 9 [cited 2024 May 23];8(364):364ra155. Available from: https://pubmed.ncbi.nlm.nih.gov/2783190
- 25. Tilly H, Morschhauser F, Sehn LH, Friedberg JW, Trněný M, Sharman JP, et al. Polatuzumab Vedotin in Previously Untreated Diffuse Large B-Cell Lymphoma. N Engl J Med [Internet]. 2022 Jan 27 [cited 2024 May 23];386(4):351–63. Available from: https://pubmed.ncbi.nlm.nih.gov/3490479 9/
- 26. Turot M, Aspas Requena G. New European approval: Polatuzumab vedotin associated to rituximab, cyclophosphamide, doxorubicin and prednisone in previously untreated Diffuse Large B-Cell Lymphoma. Bull Cancer [Internet]. 2022 Dec 1 [cited 2024 May 23];109(12):1234–5. Available from: https://pubmed.ncbi.nlm.nih.gov/3644102 8/
- 27. Crump M, Neelapu SS, Farooq U, Van Den Neste E, Kuruvilla J, Westin J, et al. Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood [Internet]. 2017 Oct 19 [cited 2024 May 23];130(16):1800–8. Available from: https://pubmed.ncbi.nlm.nih.gov/28774879/
- 28. Sawalha Y. Relapsed/Refractory Diffuse Large B-Cell Lymphoma: A Look at the Approved and Emerging Therapies. J Pers Med [Internet]. 2021 Dec 1 [cited 2024 May 23];11(12):1345. Available from:

- https://pubmed.ncbi.nlm.nih.gov/3494581
- 29. Sworder BJ, Kurtz DM. Cell-free DNA in large B-cell lymphoma: MRD and beyond. Semin Hematol. 2023 Jul 1;60(3):142–9.
- Frank MJ, Hossain NM, Bukhari A, Dean E, Spiegel JY, Claire GK, et al. Monitoring of Circulating Tumor DNA Improves Early Relapse Detection After Axicabtagene Ciloleucel Infusion in Large B-Cell Lymphoma: Results of a Prospective Multi-Institutional Trial. J Clin Oncol [Internet]. 2021 Sep 20 [cited 2024 May 23];39(27):3034–43. Available from: https://pubmed.ncbi.nlm.nih.gov/3413319 6/
- 31. Kurtz DM, Scherer F, Jin MC, Soo J, Craig AFM, Esfahani MS, et al. Circulating Tumor DNA Measurements As Early Outcome Predictors in Diffuse Large B-Cell Lymphoma. J Clin Oncol [Internet]. [cited 2024 2018 Oct 1 May 23];36(28):2845-53. Available from: https://pubmed.ncbi.nlm.nih.gov/3012521
- 32. Kurtz DM, Esfahani MS, Scherer F, Soo J, Jin MC, Liu CL, et al. Dynamic Risk Profiling Using Serial Tumor Biomarkers for Personalized Outcome Prediction. Cell [Internet]. 2019 Jul 25 [cited 2024 May 23];178(3):699–713. Available from: https://pubmed.ncbi.nlm.nih.gov/3128096 3/
- Newman AM, Lovejoy AF, Klass DM, Kurtz DM, Chabon JJ, Scherer F, et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat Biotechnol [Internet]. 2016 May 1 [cited 2024 May 23];34(5):547–55. Available from: https://pubmed.ncbi.nlm.nih.gov/2701879 9/
- 34. Kurtz DM, Soo J, Co Ting Keh L, Alig S, Chabon JJ, Sworder BJ, et al. Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA. Nat Biotechnol [Internet]. 2021 Dec 1 [cited 2024 May 23];39(12):1537–47. Available from: https://pubmed.ncbi.nlm.nih.gov/3429491 1/
- 35. Scherer F, Navarrete MA, Bertinetti-Lapatki C, Boehm J, Schmitt-Graeff A, Veelken H. Isotype-switched follicular lymphoma displays dissociation between

- activation-induced cytidine deaminase expression and somatic hypermutation. Leuk Lymphoma [Internet]. 2016 Jan 2 [cited 2024 May 23];57(1):151–60. Available from: https://pubmed.ncbi.nlm.nih.gov/2586023 4/
- 36. Roschewski M, Hodson DJ. Diffuse large B-cell lymphoma involving the central nervous system: biologic rationale for targeted therapy. Haematologica [Internet]. 2024 Feb 1 [cited 2024 May 23];109(2):388–400. Available from: https://pubmed.ncbi.nlm.nih.gov/3770631 5/
- 37. Liu S, Wang Y. Diagnosis and management of adult central nervous system leukemia. Blood Sci [Internet]. 2023 Jul 30 [cited 2024 May 23];5(3):141–9. Available from: https://pubmed.ncbi.nlm.nih.gov/3754670 6/
- Rimelen V, Ahle G, Pencreach E, Zinniger N, Debliquis A, Zalmaï L, et al. Tumor cell-free DNA detection in CSF for primary CNS lymphoma diagnosis. Acta Neuropathol Commun [Internet]. 2019 Mar 18 [cited 2024 May 23];7(1):43. Available from: https://pubmed.ncbi.nlm.nih.gov/3088525 3/
- 39. Bobillo S, Crespo M, Escudero L, Mayor R, Raheja P, Carpio C, et al. Cell free circulating tumor DNA in cerebrospinal fluid detects and monitors central nervous system involvement of B-cell lymphomas. Haematologica. 2021;106(2):513–21.
- Mutter JA, Alig SK, Esfahani MS, Lauer EM, Mitschke J, Kurtz DM, et al. Circulating Tumor DNA Profiling for Detection, Risk Stratification, and Classification of Brain Lymphomas. J Clin Oncol [Internet]. 2023 Mar 20 [cited 2024 May 23];41(9):1684–94. Available from: https://pubmed.ncbi.nlm.nih.gov/3654281 5/
- Grommes C. Circulating Tumor DNA in the Blood: A New Frontier in Primary CNS Lymphoma? J Clin Oncol [Internet]. 2023 Mar 20 [cited 2024 May 23];41(9):1649–51. Available from: https://pubmed.ncbi.nlm.nih.gov/36669147/
- 42. Fukumura K, Kawazu M, Kojima S, Ueno T, Sai E, Soda M, et al. Genomic

- characterization of primary central nervous system lymphoma. Acta Neuropathol. 2016;131:865–875.
- 43. Nayyar N, White MD, Gill CM, Lastrapes M, Bertalan M, Kaplan A, et al. MYD88 L265P mutation and CDKN2A loss are early mutational events in primary central nervous system diffuse large B-cell lymphomas. Blood Adv [Internet]. 2019 Feb 12 [cited 2024 May 23];3(3):375–83. Available from: https://pubmed.ncbi.nlm.nih.gov/3072311 2/
- 44. Momotow J, Borchmann S, Eichenauer DA, Engert A, Sasse S. Hodgkin Lymphoma—Review on Pathogenesis, Diagnosis, Current and Future Treatment Approaches for Adult Patients. J Clin Med [Internet]. 2021 Mar 1 [cited 2024 May 23];10(5):1125. Available from: /pmc/articles/PMC7962816/
- 45. Desch AK, Hartung K, Botzen A, Brobeil A, Rummel M, Kurch L, et al. Genotyping circulating tumor DNA of pediatric Hodgkin lymphoma. Leukemia [Internet]. 2020 Jan 1 [cited 2024 May 23];34(1):151–66. Available from: https://pubmed.ncbi.nlm.nih.gov/3143173 5/
- 46. Camus V, Viennot M, Lequesne J, Viailly PJ, Bohers E, Bessi L, et al. Targeted genotyping of circulating tumor DNA for classical Hodgkin lymphoma monitoring: a prospective study. Haematologica [Internet]. 2021 Jan 1 [cited 2024 May 23];106(1):154–62. Available from: https://pubmed.ncbi.nlm.nih.gov/3207970 2/
- 47. Oki Y, Neelapu SS, Fanale M, Kwak LW, Fayad L, Rodriguez MA, et al. Detection of classical Hodgkin lymphoma specific sequence in peripheral blood using a next-generation sequencing approach. Br J Haematol [Internet]. 2015 Jun 1 [cited 2024 May 23];169(5):689–93. Available from:
 - https://pubmed.ncbi.nlm.nih.gov/2581806 7/
- 48. Spina V, Bruscaggin A, Cuccaro A, Martini M, Trani M Di, Forestieri G, et al. Circulating tumor DNA reveals genetics, clonal evolution, and residual disease in classical Hodgkin lymphoma. Blood [Internet]. 2018 May 31 [cited 2024 May 23];131(22):2413–25. Available from:

- https://pubmed.ncbi.nlm.nih.gov/2944927 5/
- 49. Vandenberghe P, Wlodarska I, Tousseyn T, Dehaspe L, Dierickx D, Verheecke M, et al. Non-invasive detection of genomic imbalances in Hodgkin/Reed-Sternberg cells in early and advanced stage Hodgkin's lymphoma by sequencing of circulating cell-free DNA: a technical proof-of-principle study. Lancet Haematol [Internet]. 2015 Feb 1 [cited 2024 May 23];2(2):e55–65. Available from: https://pubmed.ncbi.nlm.nih.gov/2668761 0/
- 50. Roemer MGM, Redd RA, Cader FZ, Pak CJ, Abdelrahman S, Ouyang J, et al. Major Histocompatibility Complex Class II and Programmed Death Ligand 1 Expression Predict Outcome After Programmed Death 1 Blockade in Classic Hodgkin Lymphoma. J Clin Oncol [Internet]. 2018 Apr 1 [cited 2024 May 23];36(10):942–50. Available from: https://pubmed.ncbi.nlm.nih.gov/2939412 5/
- 51. Zanoni L, Mattana F, Calabrò D, Paccagnella A, Broccoli A, Nanni C, et al. Overview and recent advances in PET/CT imaging in lymphoma and multiple myeloma. Eur J Radiol [Internet]. 2021 Aug 1 [cited 2024 May 23];141:109793. Available from: https://pubmed.ncbi.nlm.nih.gov/3414801 4/
- 52. Cottereau AS, Versari A, Loft A, Casasnovas O, Bellei M, Ricci R, et al. Prognostic value of baseline metabolic tumor volume in early-stage Hodgkin lymphoma in the standard arm of the H10 trial. Blood [Internet]. 2018 Mar 29 [cited 2024 May 23];131(13):1456–63. Available from: https://pubmed.ncbi.nlm.nih.gov/2943759
 - https://pubmed.ncbi.nlm.nih.gov/2943759
- 53. Guo B, Tan X, Ke Q, Cen H. Prognostic value of baseline metabolic tumor volume and total lesion glycolysis in patients with lymphoma: A meta-analysis. PLoS One [Internet]. 2019 Jan 1 [cited 2024 May 23];14(1):e0210224. Available from: https://pubmed.ncbi.nlm.nih.gov/3062520 3/
- 54. Pinochet P, Texte E, Stamatoullas-Bastard A, Vera P, Mihailescu S-D, Becker S. Prognostic value of baseline metabolic

- tumour volume in advanced-stage Hodgkin's lymphoma. Sci Rep. 2021;11(1):23195.
- 55. Terasawa T, Lau J, Bardet S, Couturier O, Hotta T, Hutchings M, et al. Fluorine-18-fluorodeoxyglucose positron emission tomography for interim response assessment of advanced-stage Hodgkin's lymphoma and diffuse large B-cell lymphoma: a systematic review. J Clin Oncol [Internet]. 2009 Apr 10 [cited 2024 May 23];27(11):1906–14. Available from: https://pubmed.ncbi.nlm.nih.gov/1927371 3/
- 56. Hohaus S, Giachelia M, Massini G, Mansueto G, Vannata B, Bozzoli V, et al. Cell-free circulating DNA in Hodgkin's and non-Hodgkin's lymphomas. Ann Oncol. 2009 Aug 1;20(8):1408–13.
- 57. Hiemcke-Jiwa LS, Leguit RJ, Snijders TJ, Bromberg JEC, Nierkens S, Jiwa NM, et al. MYD88 p.(L265P) detection on cell-free DNA in liquid biopsies of patients with primary central nervous system lymphoma. Br J Haematol. 2019 Jun 1;185(5):974–7.
- 58. Li M, Jia Y, Xu J, Cheng X, Xu C. Assessment of the circulating cell-free DNA marker association with diagnosis and prognostic prediction in patients with lymphoma: a single-center experience. Ann Hematol. 2017 Aug 1;96(8):1343–51.
- 59. Delfau-Larue MH, Van Der Gucht A, Dupuis J, Jais JP, Nel I, Beldi-Ferchiou A, et al. Total metabolic tumor volume, circulating tumor cells, cell-free DNA: Distinct prognostic value in follicular lymphoma. Blood Adv. 2018 Apr 10;2(7):807–16.
- 60. Kristensen LS, Hansen JW, Kristensen SS, Tholstrup D, Harsløf LBS, Pedersen OB, et al. Aberrant methylation of cell-free circulating DNA in plasma predicts poor outcome in diffuse large B cell lymphoma. Clin Epigenetics [Internet]. 2016 Sep 7 [cited 2024 May 23];8(1):95. Available from: /pmc/articles/PMC5015248/
- 61. Wedge E, Hansen JW, Garde C, Asmar F, Tholstrup D, Kristensen SS, et al. Global hypomethylation is an independent prognostic factor in diffuse large B cell lymphoma. Am J Hematol [Internet]. 2017 Jul 1 [cited 2024 May 23];92(7):689–94. Available from: https://pubmed.ncbi.nlm.nih.gov/2837888

- 5/
- 62. Nann D, Fend F. Synoptic Diagnostics of Myeloproliferative Neoplasms: Morphology and Molecular Genetics. Cancers (Basel). 2021;13(14):3528.
- 63. Rogers A, Joe Y, Manshouri T, Dey A, Jilani I, Giles F, et al. Relative increase in leukemia-specific DNA in peripheral blood plasma from patients with acute myeloid leukemia and myelodysplasia. Blood. 2004 Apr 1;103(7):2799–801.
- 64. Quan J, Gao Y jie, Yang Z lin, Chen H, Xian J rong, Zhang S shuai, et al. Quantitative Detection of Circulating Nucleophosmin Mutations DNA in the Plasma of Patients with Acute Myeloid Leukemia. Int J Med Sci [Internet]. 2015 [cited 2024 May 23];12(1):17–22. Available from: http://www.medsci.org
- 65. Vasioukhin V, Anker P, Maurice P, Lyautey J, Lederrey C, Stroun M. Point mutations of the N-ras gene in the blood plasma DNA of patients with myelodysplastic myelogenous syndrome acute or leukaemia. Br J Haematol [Internet]. 1994 [cited 2024 May 23];86(4):774-9. Available from: https://pubmed.ncbi.nlm.nih.gov/7918071
- 66. Short NJ, Patel KP, Albitar M, Franquiz M, Luthra R, Kanagal-Shamanna R, et al. Targeted next-generation sequencing of circulating cell-free DNA vs bone marrow in patients with acute myeloid leukemia. Blood Adv [Internet]. 2020 Apr 28 [cited 2024 May 23];4(8):1670–7. Available from: https://pubmed.ncbi.nlm.nih.gov/3232488
- 67. Nakamura S, Yokoyama K, Yusa N, Ogawa M, Takei T, Kobayashi A, et al. Circulating tumor DNA dynamically predicts response and/or relapse in patients with hematological malignancies.
- 2024 May 23];108(4):402–10. Available from: https://pubmed.ncbi.nlm.nih.gov/2995974

Int J Hematol [Internet]. 2018 Oct 1 [cited

68. Suzuki Y, Tomita A, Nakamura F, Iriyama C, Shirahata-Adachi M, Shimada K, et al. Peripheral blood cell-free DNA is an alternative tumor DNA source reflecting disease status in myelodysplastic syndromes. Cancer Sci [Internet]. 2016

- Sep 1 [cited 2024 May 23];107(9):1329–37. Available from: https://pubmed.ncbi.nlm.nih.gov/2732395 4/
- 69. Yeh P, Dickinson M, Ftouni S, Hunter T, Sinha D, Wong SQ, et al. Molecular disease monitoring using circulating tumor DNA in myelodysplastic syndromes. Blood [Internet]. 2017 Mar 23 [cited 2024 May 23];129(12):1685–90. Available from: https://dx.doi.org/10.1182/blood-2016-09-740308
- 70. Garcia-Gisbert N, Garcia-Ávila S, Merchán B, Salido M, Fernández-Rodríguez C, Gibert J, et al. Molecular and cytogenetic characterization of myelodysplastic syndromes in cell-free DNA. Blood Adv [Internet]. 2022 May 24 [cited 2024 May 23];6(10):3178–88. Available from: https://pubmed.ncbi.nlm.nih.gov/3519269 3/
- 71. Garcia-Gisbert N, Fernández-Ibarrondo L, Fernández-Rodríguez C, Gibert J, Andrade-Campos M, Arenillas L, et al. Circulating cell-free DNA improves the molecular characterisation of Ph-negative myeloproliferative neoplasms. Br J Haematol. 2021;192(2):300–9.
- 72. van der Velden VHJ, Jacobs DCH, Wijkhuijs AJM, Comans-Bitter WM, Willemse MJ, Hählen K, et al. Minimal residual disease levels in bone marrow and peripheral blood are comparable in children with T cell acute lymphoblastic leukemia (ALL), but not in precursor-B-ALL. Leukemia. 2002 Jan 1;16(8):1432–6
- 73. Assi RE, Albitar M, Ma W, Patel K, Takahashi K, Yilmaz M, et al. Comparison of somatic mutations profiles from next-generation sequencing (NGS) of cell-free DNA (cfDNA) versus bone marrow (BM) in acute myeloid leukemia (AML). J Clin Oncol. 2018;36(15):7051–7051.
- 74. Jilani I, Estey E, Manshuri T, Caligiuri M, Keating M, Giles F, et al. Better detection of FLT3 internal tandem duplication using peripheral blood plasma DNA. Leukemia. 2003 Jan 1;17(1):114–9.
- 75. N.J. S, K. P, M. A. Sequencing of circulating cell-free DNA in patients with AML detects clinically significant mutations not detected in bone marrow: the role for complementary peripheral

- blood and bone marrow genomic analysis. Blood. 2019;134:2592.
- 76. Cheng SH, Lau KM, Li CK, Chan NPH, Ip RKL, Cheng CK, et al. Minimal Residual Disease-Based Risk Stratification in Chinese Childhood Acute Lymphoblastic Leukemia by Flow Cytometry and Plasma DNA Quantitative Polymerase Chain Reaction. PLoS One. 2013 Jul 25;8(7):e69467.
- 77. Ding SC, Lo YMD. Cell-Free DNA Fragmentomics in Liquid Biopsy. Diagnostics (Basel) [Internet]. 2022 Apr 1 [cited 2024 May 23];12(4):978. Available from: https://pubmed.ncbi.nlm.nih.gov/3545402
- 78. Ivanov M, Baranova A, Butler T, Spellman P, Mileyko V. Non-random fragmentation patterns in circulating cell-free DNA reflect epigenetic regulation. BMC Genomics [Internet]. 2015 Dec 16 [cited 2024 May 23];16 Suppl 1(Suppl 13):S1. Available from: https://pubmed.ncbi.nlm.nih.gov/2669364
- 79. Liu Y. At the dawn: cell-free DNA fragmentomics and gene regulation. Br J Cancer [Internet]. 2022 [cited 2024 May 23];126(3):379–90. Available from: https://pubmed.ncbi.nlm.nih.gov/3481552 3/
- 80. Jiang P, Chan CWM, Chan KCA, Cheng SH, Wong J, Wong VWS, et al. Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients. Proc Natl Acad Sci U S A [Internet]. 2015 Mar 17 [cited 2024 May 23];112(11):E1317–25. Available from: https://pubmed.ncbi.nlm.nih.gov/2564642
- 81. Underhill HR, Kitzman JO, Hellwig S, Welker NC, Daza R, Baker DN, et al. Fragment Length of Circulating Tumor DNA. PLoS Genet [Internet]. 2016 Jul 1 [cited 2024 May 23];12(7):e1006162. Available from: https://pubmed.ncbi.nlm.nih.gov/2742804 9/
- Mouliere F, Chandrananda D, Piskorz AM, Moore EK, Morris J, Ahlborn LB, et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med [Internet]. 2018 Nov 7 [cited 2024 May 23];10(466):eaat4921. Available

- from: https://pubmed.ncbi.nlm.nih.gov/3040486
- 83. Underhill HR. Leveraging the Fragment Length of Circulating Tumour DNA to Improve Molecular Profiling of Solid Malignancies Next-Tumour with Generation Sequencing: A Pathway to Advanced Non-invasive Diagnostics in Precision Oncology? Mol Diagn Ther [Internet]. 2021 Jul 1 [cited 2024 May 23];25(4):389–408. Available from: https://pubmed.ncbi.nlm.nih.gov/3401815
- 84. Chen X, Gole J, Gore A, He Q, Lu M, Min J, et al. Non-invasive early detection of cancer four years before conventional diagnosis using a blood test. Nat Commun [Internet]. 2020 Dec 1 [cited 2024 May 23];11(1):3475. Available from: https://pubmed.ncbi.nlm.nih.gov/3269461 0/
- 85. Gao Q, Zeng Q, Wang Z, Li C, Xu Y, Cui P, et al. Circulating cell-free DNA for cancer early detection. Innov [Internet]. 2022 Jul 12 [cited 2024 May 23];3(4):100259. Available from: https://pubmed.ncbi.nlm.nih.gov/3564757 2/
- 86. Shao J, Wang S, West-Szymanski D, Karpus J, Shah S, Ganguly S, et al. Cell-free DNA 5-hydroxymethylcytosine is an emerging marker of acute myeloid leukemia. Sci Rep [Internet]. 2022 Dec 1 [cited 2024 May 23];12(1):12410. Available from: https://pubmed.ncbi.nlm.nih.gov/3585900 8/
- 87. Moss J, Magenheim J, Neiman D, Zemmour H, Loyfer N, Korach A, et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat Commun [Internet]. 2018 Nov 29 [cited 2024 May 23];9:5068. Available from: https://www.nature.com/articles/s41467-018-07466-6