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ABSTRACT 

 
Evaluating the malignant profile of mutations is essential for effective patient classification, treatment 

planning, as well as management. Currently, genomic profiling of hematological cancers along with solid 

masses, i.e., lymphomas, is primarily conducted on the tissue biopsies. However, tumors may contain 

distinct genetic alterations in different anatomical regions. The circulating tumor DNA (ctDNA) exploration 

from liquid biopsies is a developing technique, allowing for genotyping, disease monitoring while treatment 

and patient follow-up. The ctDNA evaluation from liquid biopsies of Hodgkin lymphoma (HL) and diffuse 

large B-cell lymphoma (DLBCL) can mirror the mutation profile of biopsies in tissues and detect mutations 

not found in tissue samples. Additionally, variations in ctDNA levels following chemotherapy cycles can 

expressively predict the outcome of the patients. Promising results are also seen with ctDNA analysis in 

myeloid neoplasms. Beyond mutational analysis, liquid biopsies hold potential for future applications, such 

as examination of ctDNA epigenetic patterns and fragments examination. As a result, numerous clinical 

trials are currently investigating the integration of ctDNA analysis for personalized treatment in 

hematological malignancies. This review explores various methods for ctDNA analyses and use of liquid 

biopsies in hematological cancers. 
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Introduction 

Evaluating the mutational profile of cancer is 

essential for the patient stratification, 

management, as well as making treatment 

assessments. In hematological cancers along 

with solid masses, i.e., lymphomas, the genome 

profiling of tumor is typically executed on the 

tissue biopsies. These molecular and genomic 

investigations strengthen the histological 

diagnoses by detecting molecular biomarkers 

having therapeutic and prognostic significance1. 

Nevertheless, the need for invasive procedures 

limits the feasibility of sequential sampling for 

real-time observation. Furthermore, tissue 

biopsies typically focus on a single site of tumor, 

restricting widespread tumor genomic 

description, which can differ across diverse 

structural locations2,3.  

Liquid biopsy is a developing method that 

characterizes malignancies by isolating and 

analyzing the components derived from tumors 

among various bodily fluids, e.g., cerebrospinal 

fluid, urine, and blood4. These components can 

include circulating tumor cells (CTCs), tumor-

educated platelets (TEPs), cell-free nucleic acids, 

or exosomes. In hematological cancers, the liquid 

biopsy offers a negligibly invasive procedure for 

real-time that can help the tissue biopsy 

limitations, including procedural risks and the 

inability to reason for the spatial intra-tumor 

heterogeneity4. Various synchronous tumor DNA 

sources provide complementary information on 

mutational driver genes with possible value for 

prognosis or prediction. The exploration of 

circulating tumor DNA (ctDNA) from plasma is 

one of the most common liquid biopsy 

applications in hematological malignancies, used 

for monitoring and genotyping of disease and its 

response during chemotherapy5. This review will 

converse the present applications of the liquid 

biopsy in myeloid and lymphoid tumors and 

explore prospective applications in future that can 

enable a more personalized therapeutic 

management approach for each patient. 

 

1. Analysis and Detection of ctDNA 

The circulating cell-free DNA (cfDNA) comprises 

short fragments of DNA, typically 180-200 base 

pairs in length that enter the bloodstream from 

apoptotic or necrotic cells6. In healthy individuals, 

cfDNA levels in the plasma range from 1-16.8 

ng/mL and have a brief half-life of about two 

hours. These levels can rise due to factors i.e., 

infection, exercise, stroke, or trauma. In tumor 

patients, the cfDNA concentration is notably 

increased than in normal individuals because the 

necrotic and apoptotic debris in tumors is not 

efficiently removed by phagocytes. This 

inefficiency results in the collection of cell debris, 

such as cfDNA, which consequently enters the 

bloodstream. For these patients, cfDNA includes 

DNA from both healthy and cancerous cells7. The 

portion of cfDNA that comes from tumor cells, 

released through apoptosis, secretion, and 

necrosis, is ctDNA. In patients with lymphoma, 

the levels of ctDNA fluctuate widely among 

various subtypes and correlates with the type of 

tumor, tumor burden, and disease stage. On 

average, ctDNA concentration in patients with 

lymphoma is approximately 30 ng/mL8. 
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As discussed previously, the isolation of ctDNA 

can be done from various bodily fluids, but 

peripheral blood is the most commonly used 

source due to its easy accessibility. Serum and 

plasma are typically used for ctDNA analysis, with 

plasma being preferred. This preference is 

because plasma has lower levels of cfDNA from 

normal leukocytes, which helps to reduce dilution 

of the ctDNA. Blood should be collected in 

K2EDTA tubes followed by processing for 

separation of plasma within 6 hours to prevent 

leukocyte genomic DNA contamination9. 

Alternatively, specialized tubes like Streck BCT 

can preserve and stabilize ctDNA for 14 days, 

permitting safe transportation of samples. In 

order to preserve the cfDNA integrity and diminish 

lysis of leukocyte, peripheral blood should be 

processed through two sequential centrifugations 

before storage or extraction of cfDNA10. 

Investigations have shown that the purified 

plasma can be frozen at cold temperature and 

stored in the single-use aliquots without 

compromising its quality11,12. 

 

1.1. Methods to Analyze ctDNA 

 In hematological cancers, ctDNA analysis is 

used to detect gene mutations and examine 

distinctive immunoglobulin heavy chain (IGHV) 

rearrangements in B-cell malignancies. This 

allows to identify somatic mutations in cancerous 

genes without needing prior tumor biopsy 

analysis, making it a tissue biopsy-free approach. 

This method can reveal mutations from different 

tumor sites, offering a comprehensive view of 

tumor heterogeneity13. Advanced next-generation 

sequencing (NGS) techniques enables the 

analogous sequencing of many DNA components 

and molecules, identifying various genetic 

changes, including deletions/insertions, copy 

number alterations, rearrangements, and point 

mutations14. Cancer Personalized Profiling by 

deep sequencing (CAPP-seq) is one of the 

targeted method of NGS that detects tumor-

specific mutations in the ctDNA within diverse 

malignancies. CAPP-seq uses a disease-related 

selector that includes intronic and exonic targets 

wrapper regions with recognized recurrent 

mutations in particular tumor types. These target 

regions are then amplified and sequenced, 

allowing for the quantification of ctDNA by 

identifying cancer-related mutations. Nearly all B-

cell malignancies have district rearrangement of 

IGHV, detectable in ctDNA with use of PCR or 

NGS-dependent technologies. If the IGHV 

rearrangement is unproductive, the IGL or IGL 

light chain sequence can serve as an alternative 

markers. To confirm that the IGHV rearrangement 

detected in a liquid biopsy is of tumor origin, it 

should first be identified in a tissue biopsy.(15) 

The NGS-dependent assays e.g., clonoSEQ, 

which use universal primers to target 

immunoglobulin light/heavy chains, are FDA-

approved for detecting minimal residual disease 

(MRD) among chronic lymphocytic leukemia 

(CLL), B-cell acute lymphoblastic leukemia (B-

ALL), and multiple myeloma (MM) patients16–19. 

These assays are widely utilized to monitor MRD 

in patients with lymphoma. However, these 

immunoglobulin analysis methods focus on a one 

molecular markers and may not be able to identify 

clonal V (D) J rearrangement in about 20% of 

lymphoma cases because of increased somatic 

hypermutations (SHM) rate16,19,20. 
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2. Applications of ctDNA Hematological 

Malignancies 

2.1. Diffuse Large B-cell Lymphoma 

The diffuse large B-cell lymphoma (DLBCL) 

exhibits substantial molecular and clinical 

diversity. Within a single patient, different 

anatomical regions may possess unique genetic 

mutations (Table 1)21. Liquid biopsy has been 

shown to effectively identify mutations that might 

be missed in a single tissue biopsy. Research 

indicates that genetic alterations associated with 

lymphoma can be identified from the ctDNA with 

use of CAPP-seq, even in the absence of an 

initial tumor tissue biopsy8,22. Several 

independent studies have assessed the 

specificity and sensitivity of the target gene 

mutations exploration in ctDNA compared to 

tissue biopsy in patients with DLBCL23,24. The 

true-positive rate for mutations found in both 

range of ctDNA and tissue biopsy varies from 

95% to 99%. Furthermore, the liquid biopsy 

uncover about 15% to 20% of mutations not 

recognized in the lymph node biopsies, while 

merely about 1% to 5% of low-abundance 

mutations are detected solely in lymph node 

biopsies and not in ctDNA23,24. 

While many patients of DLBCL are successfully 

treated with first-line chemoimmunotherapy 

regimen R-CHOP (rituximab, cyclophosphamide, 

doxorubicin, vincristine, and prednisolone), new 

treatment modalities have recently been 

permitted25,26. Despite these advancements, 

about 40% of DLBCL patients experience relapse 

or are refractory to therapy27,28. Identifying 

molecular and clinical biomarkers to enhanced 

pinpoint patients at higher risk, could progress 

outcomes and rate of cure. Currently, criteria for 

response to lymphoma treatment do not consists 

markers of MRD at the completion of treatment. 

Monitoring ctDNA levels after and during 

treatment presents a prospective method for 

assessing MRD in patients with DLBCL. Multiple 

methods are employed to assess MRD in DLBDL 

utilizing genetic mutation as well as IGHV 

rearrangement through CAPP-seq. High-

throughput quantitative methods for analyzing 

IGHV rearrangements in ctDNA have shown the 

ability to identify the progression of disease 

months prior to conventional methods of 

imaging29. Another strategy involves using 

CAPP-seq to measure ctDNA levels at baseline 

and throughout R-CHOP treatment. A 2-log 

decrease in ctDNA from the baseline after one 

treatment cycle, and a 2.5-log reduction after two 

cycles have been recognized as optimal 

thresholds for predicting patient 

outcomes8,18,30,31. Furthermore, ctDNA-based 

molecular response remains an independent 

factor of prognosis for event-free survival (EFS), 

and overall survival (OS), even when considering 

the international prognostic index (IPI) score, 

interim CT/PET scan results, and cell of origin32. 

Advancements in molecular biology techniques 

and in silico methods, which reduce technical 

inaccuracies have significantly increased 

sensitivity of the targeted approaches based on 

NGS. Techniques to suppress errors have 

lowered the rate of background, achieving a 

sensitivity of approximately 2.5:100,00022,33. For 

instance, combining CAPP-seq to distinctive 
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barcoding and downstream bioinformatics mainly 

eradicates errors of sequencing and background 

noise, enabling the detection of ctDNA at 0.002% 

allele frequency (AF)8,24. To further enhance 

diagnostic sensitivity and minimize rate of 

background errors, an innovative technique 

named phased variant enrichment and detection 

sequencing (PhasED-seq) has been established. 

This technique monitors two or further variants 

(“phased variants”) on the similar DNA strand, 

reducing biological as well as technical 

background signals while maintaining enhanced 

genomic recovery34. PhasED-seq enables 

monitoring of ctDNA at an detection minimum 

limit of about 0.000005%8,22. This method is 

predominantly beneficial in B-cell tumor, where 

multiple-phased variants happen in stereotypes 

regions of malignant genome because of on-

target and unusual somatic hypemutations 

(SHM) regulated by activation-induced 

deaminsae (AID)35. Although PhasED-seq shows 

great potential in improving sensitivity to detect 

ctDNA in patients with lymphoma, further 

research is essential to ratify its advantage over 

CAPP-seq in early relapse detection and to 

determine the paramount clinical applications for 

this technique22. 

 

2.2. Central Nervous System Lymphoma 

The diffuse large B-cell lymphomas (DLBCLs) 

which involve central nervous system (CNS), 

terms CNS lymphomas (CNSLs), are divided into 

primary and secondary types. Primary CNS 

lymphoma (PCNSL) is a rare subclass of DLBCL 

that affects the brain, spinal cord, eyes, or 

leptomeninges without spreading outside the 

CNS. Secondary CNS lymphoma (SCNSL) 

describes either a DLBCL relapse confined to 

CNS or simultaneous involvement of the CNS 

and other body systems36. Diagnosing CNSL 

often requires invasive neurosurgical procedures, 

which can be risky or delayed due to concurrent 

treatments. Consequently, clinical outcomes for 

CNSL patients vary widely, with many facing early 

mortality or recurrence after initial treatment37. 

This highlights the need for innovative diagnostic 

methods and biomarkers that can identify CNSL 

non-invasively, better stratify the patients by risk, 

and calculate responses to therapy. 

Primarily, in PCNSL, the liquid biopsy focused on 

cerebrospinal fluid (CSF) due to decreased 

plasmas ctDNA levels, which made recognition 

difficult38,39. However, advancements in liquid 

biopsy methods, including the integration of 

PhasED-seq and CAPP-seq, have significantly 

improved the sensitivity of ctDNA detection, 

achieving high concordance rates in both CSF 

and plasma of CNSL patients40,41. Plasma ctDNA 

analysis has successfully recognized recurrent 

mutations in the genes related to the B-cell 

receptor signaling pathway, such as CD79b, 

MYD88, and PIM142,43. Expanding on the 

capability of ctDNA analysis to genotype CNSL, 

researchers have explored its prognostic value 

before and after treatment. Patients having 

detectable ctDNA in plasma before treatment, 

exhibited considerably shorter progression-free 

survival (PFS) and overall survival (OS), even 

when accustomed for known radiological and 

clinical risk factors. Furthermore, like DLBCL, the 

recognition of MRD through plasma ctDNA while 
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therapy identified the patients having bad 

prognosis after immunochemotherapy regimen40. 

 

2.3. Hodgkin Lymphoma 

The main obstacle in fully understanding Hodgkin 

lymphoma (HL) lies in the scant presence of 

malignant Hodgkin/Reed-Sternberg (HRS) cells 

among biopsy specimens, typically ranging from 

0.1% to 3%44. To overcome this challenge in 

tissue-based profiling, plasmas ctDNA emerged 

as a promising alternative for characterization HL 

mutations45,46. Notably, HL patients exhibit 

approximately double the levels of cfDNA 

compared to healthy individuals, with a median 

ctDNA levels of around 200 hGE/mL47. Despite 

HL’s smaller tumor cell volume relative to other 

aggressive lymphomas, there is a notable 

association between levels of ctDNA and volume 

of radiologic malignancy, suggesting substantial 

release of ctDNA in HL, possibly attributable to its 

high apoptotic HRS cell rate45. As a result, initial 

attention has been directed towards HL 

genotyping via liquid biopsy. Leveraging a panel 

of CAPP-seq comprising recurrently mutated 

genes in HLA, ctDNA efficaciously identified 87% 

of genetics. Furthermore, longitudinal ctDNA 

profiling unveiled therapy-based arrangements of 

clonal progression in relapsed individuals post-

treatment and those upholding partial remission 

in immunotherapy48. Given immune system 

evasion’s pivotal role in HL, investigations into 

genetic alterations of the immune checkpoint 

genes in ctDNA were prompted. cfDNA genomic 

profiling accurately identified and characterized 

approximately 80% of copy number aberrations 

of chromosome 9p24.1, associated with 

overexpression of PD-1 ligand and favorable 

outcomes in classic HL (cHL)49,50. 

Computed tomography/positron emission 

tomography (CT/PET) stands as the gold 

standard for the staging and evaluating response 

in cHL51. Total metabolite tumor volume (TMTV) 

at diagnosis strongly predicts outcomes in cHL. 

Notable, plasma ctDNA levels correlate with 

TMTV, suggesting that combining ctDNA 

quantification with TMTV assessment could 

improve outcome prediction at diagnosis52–54. 

Interim CT/PET following two ABVD cycles in 

advanced cHL characterizes an essential therapy 

juncture. Patients with negative interim CT/PET 

continue the ABVD, while those with positive 

results switch to intensified regimens. 

Nevertheless, meta-analyses reveal some 

inaccuracies in this approach, prompting CT/PET 

alongside ctDNA analysis. A >2-log decrease in 

the ctDNA following two chemotherapy cycles 

signals complete response and potential care, 

whereas a <2-log reduction indicates progression 

and shorter survival. Hence, ctDNA quantification 

supplements interim CT/PET in evaluating 

residual disease in cHL, enabling differentiation 

between cured and relapsing patients despite 

discrepancies in interim CT/PET 

interpretations55. 
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Table 1: Clinical Application of ctDNA in Lymphoma 

Application Type of 

lymphoma 

Target Method Disease 

stage 

Findings Ref. 

Concordance HL 

NHL 

β-globin gene qPCR Diagnosis Average levels of cfDNA 

in lymphoma patients 

were increased 

56 

 PCNSL APP gene RT-qPCR Diagnosis MYD88 was identified in 

cfDNA of CSF and plasma 

samples 

57 

Prognosis HL 

NHL 

β-globin gene qPCR Diagnosis Increased cfDNA levels 

were linked to bad 

prognosis in HL; not 

significant in DLBCL 

56 

 NHL APP gene RT-qPCR Diagnosis Higher cfDNA 

concentrations were 

linked to bad 2-year PFS, 

while lower concentration 

was correlated with 

significantly higher 2-

years PFS rates  

58 

 FL IgH gene 

rearrangement  

Multiplex PCR 

ddPCR 

Diagnosis Patients with higher 

cfDNA levels had a 

reduced 4-year PFS 

59 

  V(D)J gene NGS Diagnosis Elevated cfDNA levels 

were linked to bad 

progression-free survival; 

also detected subclones 

19 

 DLBCL MIR34B/C 

MIR34A 

DBC1 

APK1 

PCR  Diagnosis Methylation of DAPK1 

and DBC1 was correlation 

with poor 5-year OS 

60 

  LINE-1 PCR Diagnosis Hypomethylation of LINE-

1 emerged as an 

independent risk factor for 

poor survival 

61 

Staging DLBCL IgH gene 

rearrangement 

NGS 

PCR 

Diagnosis/ 

post-

treatment 

Patients with detectable 

cfDNA had higher hazard 

ratio for clinical disease 

progression 

18 

Response 

assessment 

DLBCL Somatic mutations CAPP-Seq 

Fluorometry  

Diagnosis/ 

Relapse 

Patients with EMR 

demonstrated EFS at 24 

months 

31 

APP, amyloid beta precursor protein; BCL2, B-cell lymphoma 2; CAPP-Seq, cancer personalized profiling by deep sequencing; 

CCND1, cyclin D1; cfDNA, cell-free DNA; CLL, chronic lymphocytic leukemia; ddPCR, digital droplet PCR; DLBCL, diffuse large B-

cell lymphoma; EFS, event free survival; EMR, early molecular response; FL, follicular lymphoma; HL, Hodgkin lymphoma; IgH, 

immunoglobulin heavy chain; LINE-1, long interspersed element-1; MYD88, myeloid differentiation primary response 88; NGS, next 

generation sequencing; NHL, non-Hodgkin lymphoma; OS, overall survival; PCR, polymerase chain reaction; PFS, progression free 

survival; PCNSL, primary central nervous system lymphoma; qPCR, quantitative PCR; RT-qPCR, reverse transcriptase quantitative 

PCR; TCR, T-cell receptor 
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2.4. Myeloid Leukemia and Neoplasm 

The analysis of many myeloid cancers depends 

upon a comprehensive evaluation involving 

morphological, molecular, and 

immunophenotypic analyses of the bone 

marrow62. While monitoring the MRD for these 

malignancies typically relies on sequential bone 

marrow assessments, recent research has shed 

light on the ability of circulating cfDNA as a 

valuable diagnostic modality. Initial investigations 

have shown increased cfDNA levels in patients 

having myeloid neoplasms in contrast to healthy 

individuals, making it a reliable indicator for 

identifying disease-specific genomic 

abnormalities (Table 2)63,64. The significance of 

cfDNA in myeloid neoplasms was initially 

recognized in acute myeloid leukemia (AML)65. 

The targeted ctDNA NGS has further advanced 

our understanding by uncovering clinically 

relevant mutations that may be missed by 

traditional bone marrow analysis, thereby 

complementing AML patient evaluation and 

monitoring. In patients with AML undergoing 

allogeneic hematopoietic stem cell 

transplantation (alloSCT), monitoring MRD based 

on ctDNA has shown promising results. Using 

NGS, researchers identified driver mutations 

among 51 patients, therefore personalized digital 

PCR assays were developed to assess MRD. 

Analysis of multiple time points post-alloSCT 

revealed the perseverance of ctDNA mutations 

was linked with poorer outcomes66,67. Analogous 

strategies have been applied in the MDS, where 

serial monitoring of ctDNA with use of digital PCR 

enables the recognition and monitoring of the 

driver mutations and karyotyping aberrations 

while treatment, predicting treatment failure68,69. 

A recent research investigated the cytogenetic 

and molecular profiles of the MDS through NGS 

analysis of ctDNA, comparing findings with DNA 

samples of paired bone marrow. The mutation 

profile identified in ctDNA displayed a high level 

of agreement (92.1%) with bone marrow analysis, 

and the variant allele frequency correlated well 

between ctDNA and bone marrow samples. 

Notably, NGS analysis of ctDNA and microarrays 

demonstrated high concordance in identifying 

chromosomal aberrations, with all cytogenetic 

abnormalities identified in bone marrow DNA also 

discovered in ctDNA. The findings highlights that 

ctDNA determination holds promise for the 

molecular representation and monitoring of 

MDS70. While there is limited data on liquid biopsy 

among patients with Philadelphia-negative 

myeloproliferative neoplasms (MPNs), an 

investigation reported elevated concentration of 

ctDNA in these disorders compared to healthy 

individuals. Furthermore, patients with primary 

myelofibrosis exhibited higher ctDNA levels than 

those with polycythemia vera or essential 

thrombocythemia. Like other hematological 

malignancies, ctDNA reveals the mutation profile 

recognized in the genomic DNA from 

granulocytes in peripheral blood or bone marrow 

samples71. 
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Table 2: Application of ctDNA in Leukemia 

Application Type of 

leukemia 

Target Method  Disease 

stage 

Findings Ref. 

Concordance ALL TCR/IgH rege 

rearrangement  

RQ-PCR Diagnosis In T-ALL, there was a 

robust correlation between 

MRD levels in matched 

bone marrow and 

peripheral blood cfDNA; no 

correlation in B-ALL 

72 

 AML Somatic mutations NGS Diagnosis cfDNA revealed a median 

of 3 novel mutations in 

patients that were not 

detected in bone marrow at 

diagnosis; also detected 

additional and identical 

mutations 

73 

 AML 

ALL 

MDS 

FLT3-ITD PCR Diagnosis Detection rate was same 

for both cfDNA and bone 

marrow in AML and MDS 

patients, but not in ALL 

patients  

74 

Early relapse 

detection 

AML 

ALL 

Somatic mutations NGS Diagnosis/ 

Relapse 

Mutations detected in both 

cfDNA and bone marrow; 

IDH1 and ASXL1 

mutations in cfDNA found 

months before relapse 

75 

MRD response 

assessment 

ALL TCR/IgH gene 

rearrangement 

RQ-PCR/ 

Flow 

cytometry 

Diagnosis/ 

Post-

treatment 

Weak correlation observed 

between two methods 

when assessing the level 

of MRD 

76 

Prognosis ALL TCR/IgH gene 

rearrangement 

RQ-PCR/ 

Flow 

cytometry 

Diagnosis/ 

Post-

treatment 

Positive MRD by flow 

cytometry on day 15 of 

treatment significantly 

increased the risk of 

relapse by 20-35 fold  

76 

Response 

assessment 

ALL TCR/IgH gene 

rearrangement 

RQ-PCR Diagnosis/ 

Post-

treatment 

In precursor B-ALL, MRD 

levels were notably 

elevated in bone marrow 

samples  

72 

ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; ASXL, additional sex combs-like; cfDNA, cell-free DNA; FLT3-ITD, 

FMS-like tyrosine kinase internal tandem repeat; IDH1, isocitrate dehydrogenase 1; IgH, immunoglobulin heavy chain; MDS, 

myelodysplastic syndrome; MRD, minimal residual disease; NGS, next generation sequencing; PCR, polymerase chain reaction; RQ-

PCR, real-time quantitative PCR; TCR, T-cell receptor 
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3. Future Applications  

The investigation into patterns of cfDNA 

fragmentation among liquid biopsy, called as 

“fragmentomics,” and its relationship with 

therapeutic outcomes has gained significant 

attention in recent era77. The thought of cfDNA 

fragmentomics was initially presented in 2015, 

leading to the establishment of various 

experimental and computational methods to 

assess the patterns of fragmentation for cfDNA in 

the plasma78,79. Typically, cfDNA demonstrates 

peaks around 166 base pairs or their multiples, 

indicating apoptosis as the primary cfDNA 

release mechanism. Cancer patients often exhibit 

molecules of ctDNA having smaller size 

distributions compared to the hematopoietic 

cells-derived background cfDNA. Recent studies 

suggest that the lengths of ctDNA fragments in 

lymphoma patients may vary individually and 

correlate with stage of disease80–83. Furthermore, 

these patterns of fragmentation have shown 

predictive capability in DLBCL, underscoring 

fragmentomics as a promising prognostic marker 

for this condition28.  

Tumor-specific changes in methylation of DNA 

play essential part in gene expression regulation 

and appear promptly in neoplastic progression. 

Such variations can potentially be identified in the 

plasma even earlier than clinical diagnosis of 

cancer is established84. Epigenetic sequencing of 

cfDNA encompasses the complete cfDNA pool, 

enabling the detection of methylation alterations 

beyond somatically mutated cfDNA alone. This 

method holds promise, given the widespread 

distribution of methylation sites through human 

genome85. Among hematological cancers, 

patterns of aberrant methylation identified in the 

cfDNA have been related with unfavorable 

DLBCL outcomes60,61. Additionally, abnormal 

alterations among 5-hydroxymethylcytosine 

(5hmC), a distinctive epigenetic characteristic 

observed in numerous tumors, have been 

detected in cfDNA, emerging as a more specific 

marker for diagnosing and prognosing AML86. 

Furthermore, specific patterns of DNA 

methylation can precisely differentiate between 

cancer types in cfDNA samples, facilitating non-

invasive cancer classification87. The 

incorporation of mutation and epigenetic 

investigations of ctDNA molecules offers a 

favorable avenue for comprehensive tumor 

characterization. 

 

4. Conclusion 

The exploration of ctDNA from the liquid biopsy is 

gaining momentum in hematological cancers as 

a trustworthy method for cancer genotyping, 

treatment monitoring, and prediction of outcome. 

Recent technological advancements have 

facilitated the combination of conventional 

molecular profiling with the liquid biopsy to 

identify and analyze biomarkers. The adoption of 

techniques like PhasED-seq and CAPP-seq in HL 

and DLBCL has emerged as a well-established 

method, enabling baseline outcome prediction 

and evaluation of minimal residual disease post-

chemoimmunotherapy, thereby aiding in the early 

detection of relapses. Numerous clinical trials are 
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currently investigating ctDNA examination for 

personalized therapy strategies. Nevertheless, 

the challenge lies in ensuring the reproducibility 

of these high-throughput technologies across 

different laboratories, necessitating 

standardization and validation before clinical use. 

The predominant focus of the liquid biopsy 

endeavors in hematological cancers has been on 

gene mutation analysis using PhasED-seq and 

CAPP-seq techniques. However, liquid biopsy 

holds potential for exploring other disease 

indicators, including ctDNA epigenetic patterns, 

copy number abnormalities, and fragmentomics. 

The integration of these factors with innovative 

statistical techniques and machine learning 

approaches has the potential to enhance the 

molecular categorization of blood disorders. The 

ctDNA examination from liquid biopsy 

characterizes a significant step onward in 

precision medicine for patients having 

hematological cancers, particulatly those with 

cHL and DLBCL. The integration of ctDNA 

dynamics with the CT/PEAT scans at provisional 

stages shows promise for enhancing outcome 

prediction and tailoring personalized treatment 

strategies during therapy. Patients without 

residual disease may benefit from treatment 

reduction, while those with persistent conditions 

may require intensified therapy. Ongoing clinical 

trials are poised to provide crucial insights into 

these questions in the near future.  
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